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Introduction 

The property of a molecule or solid 
which enables determination of the elec- 
tronic energy of the system is the energy 
density of states p(e) shown in 1 and 2. In 
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the molecular case the energy spectrum is 
discrete but in the solid state the atomic 
levels are broadened into energy bands and 
the spectrum is a continuous one. The one- 
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electron energy of the molecule or solid is 
simply given by 

molecule E = 2 i p(e)e; (1) i=i 

solid E = 2 1: p(e)e - de, (2) 

where er is the Fermi energy, the energy of 
the highest occupied level in the solid, cor- 
responding to the HOMO (level h) of the 
molecule. Theoretical effort in determining 
the energy of a molecular- or solid-state 
system is directed toward calculation p(e). 
In the solid state the location of er is partic- 
ularly important in controlling many of the 
transport properties of such materials. For 
example, a high density of states at the 
Fermi level appears to be crucial for high T, 
superconductors. Calculations which are 
good enough to locate the Fermi level at a 
narrow spike in p(e) need to be very, very 
good indeed. Structural chemists in fact, 
are invariably not interested in the total en- 
ergies of Eqs. (1) and (2) but in the energy 
differences between two systems. In the 
case of molecules the Mulliken-Walsh dia- 
gram is a well-established way to theoreti- 
cally describe the energetic preference for 
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one structure over a distorted variant (or 
vice versa) as a function of electron count. 
The reasons behind the slopes of the levels 
on changing the geometry may be viewed 
from several different perspectives, and in- 
clude overlap arguments and first- and sec- 
ond-order Jahn-Teller approaches. 

In the solid state similar arguments may 
be used. For example, the energy changes 
involved in the geometrical distortion of the 
CaC2 structure to that of pyrite (Fe&) may 
be understood (1) in much the same way as 
the acetylene (CzHt) to hydrogen peroxide 
(OzH2) distortion. In more complex sys- 
tems, in order to understand the energy dif- 
ferences between two structures from their 
relevant p(e) diagrams, projection out of 
partial densities of states are often useful. 
Then the movement up or down in energy 
of such partial densities on distortion may 
be followed in an analogous fashion to that 
used in molecules. 

These approaches provide key ways to 
understand the energetics of particular sys- 
tems by focusing on the orbital reasons be- 
hind the changes in p(e) on distortion. We 
will describe in this article a rather different 
method which enables some comments to 
be made on such energetic behavior in 
much broader orbital terms. 

Generation of p(e) 

The best known method (2-4) for con- 
structing p(e) for a molecule or solid in- 
volves solution of the secular determinant 
of 

IHij - SijEl = 0, (3) 

where the Hij are the Coulomb (i = 1) and 
resonance (i # 3) integrals linking the basis 
obitals of the molecule or unit cell. For the 
molecular case the basis set may be the va- 
lence orbitals of the molecule {$i}, for the 
solid the basis orbitals are the Bloch sums 
GPX W 

where k is the wavevector and x the orbital 
contents of the unit cell. In the molecular 
situation, solution of Eq. (3) just once en- 
ables the generation of the energy spectrum 
of 1. For the infinite solid, solution of Eq. 
(3) at a representative collection of k points 
(ranging perhaps from just a few to several 
thousand, depending on the system) en- 
ables the construction of histogram for p(e) 
by counting the number of levels located 
within small energy increments. A little 
cosmetic smoothing leads to the generation 
of the final density of states diagram of Fig. 
1. Obviously as the number of k points used 
increases, so a more accurate p(e) is pro- 
duced. 

A second method, and the one we will 
develop in the rest of this article is based on 
the method of moments (5-7). It has been 
available for many years but has found rela- 
tively little favor for the generation of p(e) 
curves. By its nature this article will be 
very much an overview of the approach we 
take. Details concerning the physical rea- 
soning and mathematical background asso- 
ciated with the method are neglected. 
These may be found elsewhere (8-10). 
First we define the nth moment of the en- 
ergy density of states 

discrete case CL,, = 2 el 
i 

(5) 
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continuous case pn = --m p(e)e”de. (6) 

Et El El 

smooth k- 
n(E) n(E) 

FIG. 1. Schematic showing the generation of the 
density of states for a solid-state system by repeated 
solution of the secular determinant at many Werent 
points in k-space. 
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FIG. 2. Schematic showing the generation of the 
density of states for a solid-state system by direct in- 
version of a finite collection of moments. The mathe- 
matical details of the inversion process are available in 
Refs. (5-9). 

With reference to Fig. 2 we will make the 
claim that it is possible, by knowing the mo- 
ments of p(e), to reconstruct the density of 
states. Figure 3 shows how, for the Hiickel 
7~ levels of graphite, as the number of mo- 
ments used in the reconstruction process 
increases, an increasingly accurate p(e) 

curve is produced (9). This is exactly anal- 
ogous to the k-space approach of Fig. 1, 
where the more points included, the more 
accurate the resulting p(e) curve. Perhaps 
somewhat disappointing is the slow conver- 
gence of the process of Fig. 3. It is this 
feature which has made it an unappealing 
approach for the physics community, inter- 
ested in details of the shape of the p(e) 
curve. By contrast the one-election energy 
of Eq. (2) converges very rapidly indeed 
with increasing number of moments. For 
example, for graphite with a half-filled 
band, use of the first eight moments gives 
an error of 0.0007/3 out of total stabilization 
energy of 0.7868. 

This is a very dramatic result because of 
the following. Imagine two systems which 
we wish to compare energetically. The 
brute force approach would be to proceed 
as in Eq. (7), via construction of 

enumerate pn for I, 

or \p(e) for I * E(x) for I 

perform k-space calcn. / 
\ 

enumerate 

p’(e) for II + E’(x) for II / 

w.4 (7) 

perform k-space calcn.’ 

the p(e) curves for the two structures, and 
evaluation of the stabilization energy of 
each as a function of band filling x (where 
empty: 0 s x 5 1: full). The p(e) may be 
generated either by the k-space route of 
Fig. 1 or the moments approach of Fig. 2. 
However, assume that the two systems are 
such that their first m moments are the 
same. Then if p(e) for each system is con- 
structed using the first m moments only, the 
energy difference curve will be identically 
zero for all x. The factors influencing the 
energy difference between the two struc- 

tures will be contained in the values of pu, 
(n > m) and, since the stabilization energy 
converges rapidly with the number of mo- 
ments, in the values of pm+] and to a lesser 
extent perhaps of P,,,+~. Thus a considera- 
ble improvement on the route of Eq. (7) is 
shown in 

h~~,,,+,.d~,,,+~~ etc. -+ AE(x). (8) 

The difference in the first disparate moment 
(and probably to a lesser extent higher mo- 
ment differences) controls the energy dif- 
ference curve. In other words a large 
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FIG. 3. Dependence of the shape of the recon- 
structed density of states diagram as a function of the 
number of moments used in the process. Notice how 
slowly converging the result is. (The diagram shows 
the result for the pi levels of graphite.) 

amount of the computational effort ex- 
pended via the route of Eq. (7) in generating 
p(e) and p’(e) by either method is wasted 
when AE(x) is computed. Obviously, to 
profit from the route depicted in Eq. (8) we 
need to be able to easily calculate the mo- 
ments for a given structure without re- 
course to the total energy density of states. 
We now show a very simple way of doing 
this. 

The nth Moment 

The nth moment is given by Eqs. (5) and 
(6) which contain the eigenvalues of the 

Hamiltonian. We can show that it may ac- 
tually be written in a particularly simple 
form (5) as 

This equation has a simple geometrical in- 
terpretation since it may be rewritten as 

where all walks which start at orbital +il 
and return in 12 steps are collected together. 
Each step from orbital j to orbital k in the 
walk around the lattice or molecule is 
weighted by the corresponding Hjk integral. 
Figure 4a shows how this perhaps surpris- 
ing result is applied to the Hiickel r levels 
of square cyclobutadiene. All walks of 
length 2 and of length 4 from a given orbital 
are enumerated. We know that (relative to 
CY = 0) the p n levels appear as in 3, where p 

u-2@- 

a 3 
Ct= 

a+2/3- a+28 

is used in its usual Htickel sense. Thus p2 = 
8P2, 114 = 32p4, etc. All p,, where n = odd 
are equal to zero, a direct result of the alter- 
nate or bipartite nature of the problem. For 
each orbital in the molecule there are but 
two walks of length two which return to the 
starting orbital, one initially moving clock- 
wise, and the other initially moving coun- 
terclockwise. Each walk is weighted by p2 
and, since there are four equivalent orbitals 
per molecule, p2 = 4 x 2 x p2 = 8p2. Simi- 
lar considerations apply to the derivation of 
~4. Figure 4b shows a more economical 
way of counting the number of walks by 
using what we call propagation diagrams. 
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FIG. 4. Calculation of the second and fourth moments of the pn levels of cyclobutadiene. (a) Shows 
the direct enumeration of the walks of length 2 and of length 4. (b) Shows a more economical way of 
counting the walks of given length by using a propagator which is allowed to walk around the molecule. 
(For simplicity we have set the Htickel (Y equal to zero. The scheme may be reworked without this 
assumption very easily.) 

As we show elsewhere (10) for molecules 
with a total of m spectrum entries (3, for 
example, has three entries) we only need to 
know the first 2(m - 1) moments. Also 
there are ways (I I) of determining the num- 
ber of spectrum entries from the properties 
of the propagation diagrams. Immediately 
then we have not only another way to 
view energy level diagrams, but one which 
has, from Eq. (lo), immediate connections 
with the connectivity or topology (we admit 
to colloquial usage of this term) of the crys- 
tal or molecular structure. 

Energy Difference Curves 

In the rest of this article we shall be par- 
ticularly interested in understanding the en- 
ergy difference curves between two struc- 
tures as a function of electron count in 
terms of the first disparate moment of the 
energy density of states. We may start to 

tackle this problem by studying systems of 
the type shown in 4 and 5. 4 is a three- 
tree which extends indefinitely in two di- 
mensions. 5 contains a three-ring in the 
middle of this tree. Let us populate each 
node of these systems with a pi orbital 
which lies perpendicular to the plane, and 
study the 7~ density of states which results. 
The first disparate moment between 4 and 5 
will clearly be the third, since 5 has the 
chance of the extra walk 6. Similarly, a 
four-ring in a three-ring will differ from 4 at 
the fourth moment because of the extra 
walk, 7, and so on. By comparison of the 
stabilization energy as a function of band 
filling of 4 relative to a system containing a 
m-ring in the three-tree, we may readily 
compute the energy difference curves 
AhE,( Figure 5 shows the curves for m = 
2-6. Notice that they become increasingly 
noded as m increases, and that their ampli- 
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FIG. 5. AZ?,(x) curves for n = 3-6 obtained by com- 
paring the energy of the three-tree with that of an n- 
ring in a three-tree, as a function of band filling. 

tude decreases. This second point is in ac- 
cord with the result described earlier con- 
cerning the rapid energetic convergence 
with the number of moments. 

For m = 3, for example, Fig. 5 tells us 
that the three-ring in a three-tree is more 
stable than the three-ring itself for band fill- 
ings which are less than a point close to the 
half-filled position, and less stable for 
higher band fillings. A similar functional 
form (but with different amplitudes), is 
found for other coordination numbers. One 
rather interesting observation concerning 
these plots is their correlation with the 
Htickel 4n + 2 rule for conjugated cyclic 
hydrocarbons (22). The levels associated 
with the T network of C3H3, for example, 
contain three electrons. For stability in the 
Htickel sense, one less (n = 0) electron is 

needed, i.e., C3H:. Notice that at x = 0.5 
(the situation in C3H3) the three-ring is de- 
stabilizing, but at x = 0.3333 (the situation 
in C3H$) the three-ring is stabilizing. Simi- 
larly the four-ring, appropriate for C4H4, at 
x = 0.5 is unstable but &Hz* (n = 0) or 
C& (n = 1) correspond to values of x 
equal to 0.25 and 0.75, respectively, which 
coincide with regions of stability. The 
curve for the five-ring, appropriate for C5HS 
has a node at x = 0.5, but CSH; with an 
extra electron and corresponding to II = 1 
(x = 0.625) now falls in a region of stability. 
The curve for the six-ring (&He) shows a 
stabilization at x = 0.5, the case for ben- 
zene itself (n = 1). So it appears that the 
Htickel rule is just a special case (for cyclic 
T systems) of the stabilization curves of 
Fig. 5. 

Perhaps the most important point con- 
cerning these curves, is that although they 
have derived for m-rings of p7r orbitals, 
they represent in general the behavior ex- 
pected for the energy difference between 
two arbitrary systems whose first disparate 
moment is the mth. Thus, although the ex- 
act shapes of the curves in the examples we 
describe below differ a little from those of 
Fig. 5, their overall shape is remarkably 
similar. This occurs simply because the mo- 
ments associated with the o manifold of an 
m-ring located in the tree will first differ 
from those of the three-tree itself at the mth 
moment. Since there are three m-type orbit- 
als at each center the single walk of 6 for 
the manifold is replaced by 33 (T type walks 
of length 3 for the three-ring. The overall 
effect will be the sum of these, each carry- 
ing a different weight (the product of the 
Hjk’S of Eq. (9)) because of the different 
orientations and overlaps of the orbitals in- 
volved. Also walks “in-place” (Hj) need to 
be included here. Whereas we could arbi- 
trarily set Hj = (Y = 0 for Htickel7~ levels of 
Fig. 4 and 3, we cannot set to zero both s 
and p Coulomb integrals. Although these 
are added complications, the simple fact re- 
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mains that for an m-ring it is the mth mo- 
ment which is the first to differentiate it 
from the simple tree. In this light it is inter- 
esting to compare the stabilization/destabi- 
lization energies of various rings relative to 
the simple tree, with the “ring strain” ener- 
gies which organic chemists typically asso- 
ciate with such systems. From Fig. 5 note 
that three- and four-rings are both destabil- 
ized, five- (and seven) membered rings 
have a node in their A&(X) curves at the 
half-filled point, and the six-ring is stabi- 
lized. 8 compares the two approaches. 
The ordering in the two schemes is the 
same, although the reference energy zero is 
different in the two. Obviously not all the 
energy difference between the rings of 
varying size arises via the physical act of 
forming the collection of atoms into a ring. 
Angle changes, the traditional explanation 
of the organic chemist, are important too. It 
turns out (9) that for the case of the four- 
ring, the angle strain effect is about half as 
important as the effect of forming the ring 
itself, at the half-filled point (x = 0.5) which 
of course corresponds to the case of carbon 
with its four electrons per atom. 

Ring 
size Moment prediction Ring strain 

394 Strongly destabilized Highly strained 8 
597 No effect Small strain 
6 Small stabilization Strain-free 

Structural Stability 

Perhaps the obvious place to test out 
these ideas is in the area of the Htickel pn 
levels of plane nets. The best known exam- 
ple is that of graphite, the 63 net (9). With 

10 

one pr electron contributed per carbon 
atom, the pr band is half-full (x = 0.5). 
10 shows a rival structure, that of the non- 
metal net in ScB2CZ. Assuming the SC, 
which lies between the layers over the 
seven-rings, is present as Sc(III), then the 
pr band contains five electrons per four at- 
oms, i.e., x = 0.625. 11 shows the en- 

ergy difference curve (9) from a Hiickel- 
based calculation (using the technique of 
Fig. 1). Satisfyingly, graphite wins out at x 
= 0.5 and ScB2C2 at x = 0.625. But how can 
we understand the shape of this curve? It 
is, in fact, quite well approximated by a lin- 
ear combination of the A&(x) and A&(X) 
curves of Fig. 5, along with a small contri- 
bution from A&(x). Notice that AEs,7(x) 
have a node at x = 0.5 but here A&(x) is 
stabilizing. Just past the half-filled point 
A&(x) is becoming energetically less attrac- 
tive but A&(x) is becoming energetically 
more advantageous. By the time x = 0.625 
the presence of five-rings in ScB& ensures 
that this structure is more stable than 
graphite. Notice that this result is related to 
that described earlier concerning the 
Hiickel 4n + 2 rule in molecules. 

Figure 6 shows the cubic diamond struc- 
ture and the hypothetical structure of “tet- 
rahedral” diamond, derived by locating 
carbon tetrahedra at each of the nodes of 
the diamond lattice. Figure 7 shows (9) the 
calculated energy difference curve between 
the two structures (using the method of Fig. 
I) as a function of band filling. Notice that 
this curve bears a striking resemblance to 
the AE3(x) curve of Fig. 5. Indeed it should, 
since the cubic diamond structure contains 
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FIG. 6. The structure of (a) cubic diamond (b) “tetrahedral” diamond, and (c) “supercubane.” 
Structures (b) and (c) are hypothetical. 

cubic diamond 

FIG. 7. Calculated energy difference curves as a 
function of band filling for the cubic diamond structure 
and the two hypothetical structures of Fig. 6, tetrahe- 
dral diamond and supercubane. When the plot is nega- 
tive the cubic diamond structure is more stable. 

no ring smaller than six, but the tetrahedral 
diamond structure is full of three-rings. 
Thus the first disparate moment will be the 
third. Satisfyingly, cubic diamond is pre- 
dicted to be more stable than the alternative 
at the half-filled point, the electron filling 
corresponding to elemental carbon. Figure 
6 also shows the structure of another hypo- 
thetical arrangement, supercubane. This is 
a body-centered lattice with cubes located 
at each node. This structure is dominated 
by the presence of four-rings. Like the 
other two structures in Fig. 6, this arrange- 
ment also contains four-coordinate centers. 



FIG. 8. The structure of rhombohedral boron. No- 
tice the large number of three-rings. 

Figure 7 also shows the energy difference 
curve (9) between supercubane and cubic 
diamond. Notice that it has all the features 
of the curve expected for two systems 
whose first disparate moment is the fourth. 
Thus tetrahedral diamond with its three- 
rings and supercubane with its four-rings 
are destabilized at the half-filled band rela- 
tive to cubic diamond with its six-rings. 
These two structures are predicted to be 
stable (relative to cubic diamond, but not 
perhaps with respect to some other struc- 
ture) at other band fillings. 

Figure 8 shows the structure of rhombo- 
hedral boron. It is a structure full of three- 
rings. An energy difference curve (9) with 
the cubic diamond structure is shown in 
Fig. 9. Two curves are shown. The one la- 
beled I assumes equal densities for the two 
structures, and that labeled II assumes 
equal nearest neighbor distances. Both 
curves show the dominating influence of 
the AE3(x) curve, but the crossing point 
along the x-axis is model dependent. Let us 
see how this comes about. To do this we 
need to examine the second moments of 
these two structures. From Eq. (9) it is ob- 
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FIG. 9. Calculated energy difference curves as a 
function of band filling for the cubic diamond structure 
and the rhombohedral boron structure. The two 
curves represent two different geometrical models (see 
text). When the plot is negative the cubic diamond 
structure is more stable. 

vious that the second moment is simply the 
sum of the squares of all the Hij elements 
between the orbitals on an atom and its 
neighbors. Cubic diamond and rhombohe- 
dral diamond therefore have different sec- 
ond moments because of(i) the presence of 
six neighbors in the boron structure but 
only four in diamond and (ii) in model II 
different interatomic distances lead to dif- 
ferent values of the Hij. From Fig. 5 we 
expect that A&(x) will be a nodeless curve 
(except for those at x = 0,l) and that the 
actual energy difference curve will be (in a 
similar fashion to the graphite/ScB$z prob- 
lem above) a mixture of A&(x) and A&(x) 
as shown in 12. It is clear to see how the 
crossing point moves from one model to an- 
other on such a scheme. 

Table I shows the crystal structures of 
the heavy elements at the bottom right- 
hand side of the Periodic Table. The struc- 
ture of polonium is unusual in that it is the 
only known example of the simple cubic 
structure under ambient conditions. In this 
part of the Periodic Table the valence 6s* 
pairs of electrons are often visualized as be- 
ing stereochemically inert-perhaps as a 
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TABLE I 

THE HEAVY ELEMENTS AT THE BOTTOM RIGHT OF 

THE PERIODIC TABLE 

Tl Pb Bi PO 

hcp fee cu-Bi Simple cubic 
0% 2 I 0% 2 2 9p’ 2 4 

x(p band) = 0.5 0% 
(assuming an inert pair) 

result of relativistic effects which make 
them core-like (23). Figure 10 shows the 
results of band structure calculations on the 
fee, o-B& and simple cubic structures, 
which, taking advantage of this fact employ 
p orbitals only. Not only are the energy dif- 
ference curves in good agreement with the 
experimental observation of the relevant 
structure, but the shapes of the curves look 
similar. In close-packed structures with 
high densities there will be many closed 
loops of length three in the structure. So the 
fee and hcp structure stability will be domi- 
nated by the third moment energetics and 
be most stable at early band fillings (e.g., 
Tl, Pb). Three-rings are unfavorable at the 
half-filled point but six-rings are favored. 
Here the cw-Bi structure is found with its 
puckered six-membered rings. The simple 
cubic structure is, of course, dominated by 
four-rings and, from Fig. 5, should be stable 

sidle cubic 
+ 1 

FIG. 10. Calculated energy difference curves as a 
function of band filling for the fee, a-Bi, and simple 
cubic structures, using a p-orbital-only model. When 
the plot is negative the simple cubic structure is more 
stable. 

at the three-quarters filled band. The fee 
and hcp structures are obviously close in 
energy. The earliest moment at which they 
may differ is the fourth, since the structures 
differ at the second-nearest neighbor level 
only (W). In fact the fourth moments turn 

13 

hcp kc 

out (9) to be very similar and it is a fifth 
moment difference which distinguishes fee 
and hcp. The hcp is stable initially (14) as 
found experimentally for thallium, and fee 
is more stable later. 

X =0.167 hcp more stable 

:. 0.3 
Pb 

fee more stable 

Stacking Problems 

A problem often met in structural chem- 
istry is that of deciding how the constituent 
atomic species are distributed over the sites 
of a lattice. A simple one-dimensional ex- 
ample is associated with systems of AB 
stoichiometry. Here A,B may be atoms or 
polynuclear structural units. What factors 
affect the relative stabilities of the . . . 
ABAB. . . and . . .AABB. . . arrange- 
ments? For most organic donor-acceptor 
complexes with other organic molecules or 
with coordination compounds the alternat- 
ing arrangement is found, but there are 
some examples which contain the . . . 
AABB. . . pattern. In three dimensions a 
similar problem is encountered in the stack- 
ing of sheets of atoms. As we will see be- 
low, the . . .ABAB. . . arrangement is 
found for the CsCl structure but the . . . 
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AABB. . . for the CuTi structure, two de- 
rivatives of the bee structure. 

Our model will consider a single orbital 
on atoms A and B, with Hii values of (YA and 
as, respectively. As an approximation we 
will put the resonance integral (/3> equal for 
all AA, BB, and AB interactions. By using 
the walk-counting technique of Fig. 4 and 
including in Eq. (9) the relevant walks in 
place (e.g., 15, 16) where the weight is 

15 16 

given by Hii, it is easy to derive the first few 
moments of the . . .AABB. . . and . . . 
ABAB. . . structures (14). These are 
shown in Table II. The first disparate mo- 
ment between the two structures is the 
fourth which is larger for the . . .AABB 
. . . arrangement. So the energy difference 
curve for the two structures as a function of 
band filling should look very much like 
A&(x) of Fig. 5. For example, at the one- 
quarter and three-quarters-filled band posi- 
tions the . . .AABB. . . isomer should be 
more stable than the . . .ABAB. . . iso- 
mer, but at the half-filled point the . . . 

TABLE II 

MOMENTS OF STACKING ALTERNATIVES 

. .ABABAB. . . 

PI = a.4 + ffB 

. . AABBAA. . 

@.I = ffA + % 
p* = ff; + a; + 4p 
p3 = a; + a; + 6/3+x* + aB) 
/.L~ = a”A + ai + 12p* + 8/32(cx; + a;) + 4qQ 

(Assuming the only difference between A,B is a 
different cx value) 

ABAB. . . structure is favored. This very 
simple result enables us to understand the 
structural differences found in organic do- 
nor-acceptor complexes (15). Most of 
these are built up from interaction between 
filled and empty orbitals as in 17. There 

rj 9 9_ ri ,8 

ri -hi7 a- 

results one electron pair per two orbitals, a 
situation leading to x = 0.5. However, in 
NBP-TCNQF4 the interaction is between a 
half-full orbital and an empty one (18) 
which leads to a quarter-filled band and the 
observation of the. . .AABB. . . arrange- 
ment (16). In more traditional language this 
particular structure can be viewed as aris- 
ing via the linking of unpaired electrons to 
give stable A-A dimers but it requires delo- 
calized bonding ideas to understand why 
this arrangement is more stable than the al- 
ternative. Figure 11 shows the calculated 
energy difference curve between the CsCl 
and CuTi structures (27). These are deriva- 
tives of the body-centered cubic arrange- 
ment and consist of 44 nets of atoms 
stacked up along c, each shifted (a + b)/2 
relative to the sheet beneath it. The CsCl 
structure contains sheets in the . . . 
ABAB. . . stacking sequence, the CuTi 
structure, sheets in the . . .AABB. . . se- 
quence. Notice how the energy difference 
curve looks very similar to the AE4(x) curve 
of Fig. 5. (There is in fact some asymmetry 
due to the fact that we have set all AA, BB, 
and AB resonance integrals equal on our 
model above, whereas in practice they are 
different (14)) The dashed line in Fig. 11 
shows the observed regions of stability of 
the two structures. Experiment and theory 
mesh nicely. Notice that in this example, in 
contrast to the linear chain problem above, 
there is no traditional bonding viewpoint 
available to view these structures. 
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FIG. 11. Calculated energy difference curve as a 
function of band tilling for ihe CsCl and CuTi struc- 
tures adopted by some transition metal-transition 
metal alloys. The dashed line corresponds to regions 
where examples of these structures are found in prac- 
tice. 

In this section we have therefore shown 
that it is not always necessary to look for 
moment differences in terms of a loop in the 
form of a geometrical circuit, in order to 

3 

use the A&(x) curves of Fig. 5. In the next 
section we show another example. 

Molecules 

The moments’ approach may be used in 
the molecular area too, although it is not 
yet clear that the A&(x) curves of Fig. 5 
will be as applicable. Figure 12 shows a 
comparison of some energy difference 
curves for the Htickel pr levels of some 
two-dimensional nets with those for some 
IO-atomic molecules with the same ring 
type. Many features of the two sets of 
curves are similar, including the stability of 
the 5/7-ring structures just after the half- 
filled point, and the strong destabilization 
of the 4Bring structure relative to the other 
possibilities at the half-filled point. 

Energetically the most dominant of the 
curves of Fig. 5 is the one corresponding to 
A&(x). For less than an approximately half- 
full band three-rings are stable, but at the 
half-filled point and beyond they are unfa- 
vorable structural features. It is therefore 
interesting to note that the structures of the 
(so-called “electron deficient”) car- 
boranes, transition metal carbonyl, or cy- 

AE 
- 

blcyclo [3&O] 
decawntoene tbdp, 

FIG. 12. Calculated energy difference curve as a function of band filling or number of electrons per 
molecule, for a series of two-dimensional nets and small conjugated hydrocarbons. These calculations 
employed the Hiickel method for the out-of-plane pn levels of these two systems. 
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clopentadienyl cluster compounds and the 
hybrid metallocarboranes are based on 
deltahedral frameworks. In such polyhedra 
every face is triangular. According to 
Wade’s rules (18), the close n-vertex 
deltahedron is stable for a total of (n + 1) 
skeletal electron pairs. Since there are a to- 
tal of 3n orbitals which may be involved in 
skeletal bonding, this corresponds to x = 
0.3, i.e., close to the maximum in A&(x). 
Notice that for the series of molecules 19, 

nido arachno 

6 pairs 7 pairs 

t 
8 pairs 

half full 
19 

with the structures predicted by Wade’s 
rules, as the electron count increases, the 
proportion of three-rings decreases. Even- 
tually, for the arachno pentagonal bipyra- 
mid the “band” is more than half-full (8 
skeletal pairs, 5 atoms, and 15 skeletal or- 
bitals) the structure contains no three-rings 
but a single five-ring, stable just after the 
half-filled point. 

20 shows another set of molecules 

/H\’ 
H-H 

L,MO + Hz 4 L,M( 

MokO),IPR,12 

H-H-H L,MGD+H, -L,M 
,H Y- 

\ H-t;; 

Ir(PR,),CI 
H H 

which show the stability of the three-ring 
for the case of two electrons per three orbit- 
als (x = 0.333) and destruction of the three- 
ring for the four-electron case (x = 0.667). 
H; and CH; are unknown species and are 

calculated to be unbound. All of the other 
species are known. 

Finally, we note that the first disparate 
moment between linear and bent triatomics 
is the fourth. Also it is the nonlinear geome- 
try which has the larger fourth moment. 
The energy difference curve for the two 
structures will then look like A&(x). Figure 
13 shows this curve, taken from Fig. 5, suit- 
ably labeled with the number of valence 
electrons and some examples of triatomic 
molecules. Notice how the linear/bent 
crossing point between 16 and 17 electrons 
(CO2 and NO2 for example) is accurately 
reproduced. In other words, contained in 
the moments’ approach is the essence of 
Walsh’s rules. 

Caveats 

We must emphasize at this point some of 
the restrictions of the method. First, it will 
only be applicable in a qualitative sense to 
those systems where one-electron orbital 
methods succeed in discriminating energet- 
ically between one structure and another. 
Its major utility here will be as an interpre- 
tive tool for numerical results. (It may well 
have a qualitative appeal in terms of the 
way we look at structures. Coordination 
polyhedra, close packings etc., all play 

linear 
- 

bent 

FIG. 13. The A&(x) curve from Fig. 5 labeled with 
the relevant electron counts for a triatomic molecule 
composed of main group atoms. Also shown are some 
representative examples. 
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their role in helping us organize the 
plethora of different structural types which 
have been identified. Looking at structures 
in terms of moments and walks provides a 
direct link between geometry and ener- 
getics.) One example where one-electron 
ideas (and hence our scheme presented 
here) fails is with the structure of white 
phosphorus and isoelectronic systems such 
as GeK. The three-rings which dominate 
the tetrahedron we claim are energetically 
unfavorable at this electron count. Indeed a 
one-electron calculation shows this struc- 
ture to be much less stable than the arsenic 
or black phosphorus layer structures at this 
electron count. However, the fact remains, 
that although white phosphorus is not as 
stable as other allotropes, it does exist (as 
does its arsenic analog). 

Second, it will have been noticed that, 
although the calculated energy difference 
curves have the same general shape as the 
A&(x) curves, there are many differences 
in detail, particularly in the crossing points. 
Sometimes, as in 11 and 12, this is under- 
standable as a result of admixture of two 
different A&(x) curves. Sometimes, as we 
discuss elsewhere (9) it is due to the differ- 
ent shapes of the p(e) curves. 

Third, the extension of the use of the 
AE,(x) curves to molecules is not entirely 
straightforward. Thus the energy difference 
curve for the linear/bent triatomic molecu- 
lar case, although containing crossings at 
the same places as those of Fig. 13, also 
contains some other structure as a result of 
the discrete nature of the energy level pat- 
tern. Also it will not have escaped the as- 
tute reader’s attention that the crossing 
points for the pyramidalization of the & 
systems do not occur where predicted using 
@4(x). 
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